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Radiation by weakly nonlinear shallow-water solitons due to higher-order dispersion
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Nonlinear asymptotic equations for shallow-water waves, with account of high-order dispersion and surface
tension @generalized Boussinesq system~GBS! and generalized Korteweg–de Vries~GKdV! equation# are
derived. Regular expansions of these equations in powers of a dispersion parameter lead to different types of
already used KdV-type equations, in particular to fifth- and higher-order KdV equations. It is shown that the
fifth-order KdV equation describes in a good approximation the shape of a shallow-water soliton, but is
insufficient for the consistent description of soliton resonant radiation. The latter is caused by the resonant
interaction between the soliton and a plane wave with the phase velocity equal to the soliton velocity. It is
shown that the resonant radiation can be correctly described only by equations that take into account dispersive
effects to all orders in a region beyond the soliton. The GKdV equation possesses this property and a theory of
the soliton resonant radiation, based on the GKdV equation, is developed. It is shown that an account for the
full dispersion law for the radiation significantly changes the results obtained earlier by means of the fifth-order
KdV equation. A soliton damping caused by its resonant radiation is investigated by means of the GKdV
equation.@S1063-651X~98!03710-6#

PACS number~s!: 42.65.Tg, 47.20.Ky, 52.35.Sb
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I. INTRODUCTION

There are a number of regular procedures for deriv
approximate partial differential equations from the full se
of equations describing nonlinear dispersive systems~e.g.,
@1–5#, etc.!. For weakly nonlinear waves in shallow wat
they lead, in the lowest approximation, to the Boussinesq
Korteweg–de Vries~KdV! equations. Higher-order correc
tions to the Boussinesq and KdV equations permit one
describe different types of perturbation effects. Among th
there are effects described bylinear high-order dispersive
terms. A typical example, which has attracted significant
tention in recent years, is the fifth-order KdV equation~e.g.,
Refs. @6–11#!. It contains, in addition to the third-order de
rivative, a linear fifth derivative term that can lead to a ne
effect: the resonant soliton radiation@8–11#. If the coefficient
before the fifth derivative is small, the amplitude of the r
diation is exponentially small and, therefore, this effect b
longs to the phenomena that are ‘‘beyond all power order
the perturbation parameter’’@12#. Thus, it cannot be de
scribed by a perturbation theory, based on the expansio
powers of the perturbation parameters. Despite the small
of the resonant soliton radiation, it is very interesting b
cause it may lead to a significant soliton attenuation at la
distances and has a rather general nature: it may take pla
other high-order dispersive systems, e.g., systems desc
by higher-order nonlinear Schro¨dinger equations@13,10,14–
16# in one and higher space dimensions as well as by o
equations@17–21#. In higher dimensions, the soliton radia
tion makes a serious impact on self-focusing and colla
@14,18#.

The fifth-order KdV equation@6–11# should be consid-
ered a result of a proper expansion in powers of the dis
sive and nonlinearity parameters,n andl, defined below. For
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the problem of soliton radiation, the fifth-derivative ter
~with a small coefficient! is mostly significant in the region
beyond the soliton. Indeed, the resonant radiation wave n
ber, which basically determines the properties of radiation
calculated by applying the fifth-order KdV equation to th
domain. In the soliton domain, the fifth derivative term~as
well as nonlinear terms, which are of higher-order than in
KdV equation! plays the role of small perturbations th
mainly determine the soliton deformation; it can be n
glected in the lowest approximation. Similar remarks are r
evant to seventh- and higher-order approximations.

However, as will be shown below, the fifth- and highe
order KdV-type equations are insufficient for aquantitative
description of radiation, even at small dispersion parame
n. Indeed, to justify their applicability to the soliton radia
tion, one must requirenk2!1, wherek is the wave number
of radiation. On the other hand, from the fifth-order Kd
equation it follows thatk2;n21, i.e., nk2;1 @6–11#. An
account of the seventh-order dispersion does not improve
situation. Due to that a quantitative theory of the solit
radiation, caused by the higher-order dispersion, canno
based on the expansion in powers of the dispersion par
etern.

The development of the quantitative theory of solit
resonant radiation is the main goal of the present paper
achieve it, we first derive equations generalizing the Bou
inesq and KdV equations for shallow-water waves in suc
way that the exact dispersive law for the gravity-capilla
waves follows from them. The application of such equatio
@we call them generalized Boussinesq~GB! and generalized
KdV ~GKdV! equations# to the soliton radiation gives cor
rect wave numbers and amplitudes of the radiation. For
expansions of GB and GKdV equations in the powers
dispersion parametern give, to first order, the classica
Boussinesq and KdV equations~or similar equations, having
the same accuracy! and, to higher orders, the fifth-orde
KdV, seventh-order KdV equations, etc.
5070 © 1998 The American Physical Society
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The paper is organized as follows. In Secs. II and III
derive the generalized Boussinesq system and the GK
equation and, on their basis, other types of KdV equations
theory of the resonant soliton radiation is described in S
IV using the GKdV equation. Then the results are compa
with those following from the fifth-order KdV equation. W
also compare the obtained equations with those based o
reductive perturbation method@1# and its recent improve
ments@4#. The soliton attenuation caused by the radiation
studied in Sec. V and a short conclusion is given in Sec.

II. GENERALIZED BOUSSINESQ SYSTEM

We start with the equations for potential gravity-capilla
waves in an incompressible fluid with the densityr:

¹2F50, ~2.1!

S ]F

]Z D
Z52h

50, ~2.2!

S ]Z0

]T
1

]Z0

]X

]F

]X
1

]Z0

]Y

]F

]Y
2

]F

]Z D
Z5Z0

50, ~2.3!

F]F

]T
1

1

2
~¹F!21gZ1

p2p0

r G
Z5Z0

50, ~2.4!

whereZ05Z0(X,Y,T) is the equation of the fluid free sur
face, F5F(X,Y,Z;T) is the velocity potential,¹F5V.
The equilibrium surface is the planeZ50 and the bottom is
at Z52h.

The pressure at the free surfaceZ5Z0 does not coincide
with the external pressurep0 if there is a surface tension
Generally,

p5p02aS 1

R1
1

1

R2
D[p02a¹@~11u¹Z0u2!21/2¹Z0#,

~2.5!

where R1,2 are the principal radii of curvature of the fre
surface anda is the coefficient of surface tension.

Consider long~with respect to the depth! and small am-
plitude waves assuming, therefore, a smallness of the foll
ing two parameters:

n5
1

3 S h

L D 2

, l5
a

h
, ~2.6!

whereL anda are scales of wavelength and wave amplitu
We introduce the dimensionless quantities

x5X/L, y5Y/L, z5Z/L, t5c0T/L, ~2.7a!

z5Z0 /a, F̃5~c0 /agL!F~x,y,z;t !, ~2.7b!

wherec05Agh. Then the solution to Eq.~2.1! with bound-
ary condition~2.2! can be written as

F̃5
1

~2p!2 E E A~k,t !cosh@k~z1h̃!#exp~ ik•r !d2k,

~2.8!
V
A
c.
d

the

s
I.

-

.

F̃z~x,y,z![]zF̃~x,y,z!

5
1

~2p!2 E E kA~k,t !sinh@k~z1h̃!#

3exp~ ik•r !d2k, ~2.9!

where

h̃5h/L5A3n ~2.10!

(h̃ is the dimensionless unperturbed depth! and the function
A(k,t) is determined by other equations and initial con
tions. From Eq.~2.9! it is easily seen that condition~2.2! is
satisfied.

Observing thatZ5Z0 corresponds toz05lA3nz and in-
troducing the functionf,

f~x,y,t !5F̃~x,y,0,t !, ~2.11!

we have from Eqs.~2.8! and ~2.9!

F̃~x,y,z0 ,t !5f~x,y,t !1A3nlzF̃z~x,y,0,t !1O~l2n!,
~2.12!

F̃z~x,y,0,t !5 k̂ tanh~A3n k̂!f~x,y,t !, ~2.13!

F̃z~x,y,z0 ,t !5 k̂ tanh~A3n k̂!f~x,y,t !2lA3nzDf~x,y,t !

1O~l2n!. ~2.14!

Now D is the two-dimensional Laplacian

D5~]x
21]y

2![2 k̂2, ~2.15a!

and an operatorF( k̂) is defined as

F~ k̂!C~r !5
1

~2p!2 E dk F~k!G~k!eik•r, ~2.15b!

whereG(k) is the Fourier transform ofC~r !. A formal ex-
pansion gives

k̂ tanh~A3n k̂!5
1

A3n
~3n k̂2!S 12n k̂21

6

5
n2k̂42¯ D .

~2.16!

Thus, the operator in the left-hand side of Eq.~2.16! can be
expressed as a power series of the Laplacian~2.15a!. @In fact,
Eq. ~2.16! is an integral operator.# From Eq.~2.16!, the ex-
pansions of Eq.~2.13! and other expressions follow.

Using Eqs.~2.7! and~2.12!–~2.14!, we get from Eq.~2.3!
the approximate equation

z t1l¹~z¹f!2~3n!21/2k̂ tanh~A3n k̂!f1O~ln,l2!50.
~2.17!

In a similar way, from Eq.~2.4! it follows that

f t1
1
2 l~¹f!21z2nsDz1O~ln!50, ~2.18!

wheres is a normalized surface tension coefficient

s53a/rgh2.0. ~2.19!
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It is proportional to the Bond number.
In linear approximation, Eqs.~2.17! and ~2.18! become

z t2~3n!21/2k̂ tanh~A3n k̂!f1O~l!50, ~2.20!

f t1z2nsDz1O~l!50. ~2.21!

Eliminating f from Eq. ~2.20!, we have

z tt1~3n!21/2k̂ tanh~A3n k̂!~12nsD!z1O~l!50.
~2.22!

Looking for a plane-wave solution to Eq.~2.22!

z}exp~ ik•r2 ivt !, ~2.23!

we obtain the linear dispersion equation in dimensionl
variables

v25~3n!21/2k~11nsk2!tanh~A3nk!. ~2.24!

Passing to dimensional variablesV andK ,

v5~L/c0!W, k5LK , ~2.25!

we have

W25gK tanh~hK!@11~1/3!sh2K2#, ~2.26!

which is the well-known exact linear dispersion equation
the gravity-capillary waves in an inviscid incompressib
fluid.

Now, consider the opposite case of nonlinear, but non
persive waves. Assuming in Eqs.~2.17! and ~2.18! that n
→0 and taking into account Eq.~2.16!, we have

z t1l¹~z¹f!1Df50, ~2.27!

f t1
1
2 l~¹f!21z50. ~2.28!

Introducing the quantity

h511lz, ~2.29!

we obtain from Eq.~2.27!

h t1l“•~h“f!50. ~2.30!

Expressingh through dimensional variables we have

h5~Z01h!/h5H/h, ~2.31!

where H5Z01h is the full height of a point on the fluid
surface. Thus,h is the dimensionless full height. In dimen
sional variables, Eq.~2.30! takes the form

]TH1div~HV!50, ~2.32!

where

V5gradF~X,Y,0,T!. ~2.33!

Equation~2.28! can be transformed to

]TV1~V•“ !V1
1

2H
“~gH2!50, ~2.34!
s

r

s-

where“5(]X ,]Y). Equations~2.32! and~2.34! are the well-
known equations of shallow water in the nondispersive lim
they coincide with the equations describing a tw
dimensional flow of an ideal gas with the adiabatic indexg
52; Eq. ~2.32! is the continuity and Eq.~2.34! is the Euler
equation~H plays the role of density andp5gH2/2 is a
‘‘pressure’’!. Respectively, Eq.~2.30! is the continuity equa-
tion in dimensionless variables and, therefore,“f(x,y,t) is
the dimensionless velocity that describes the horizontal m
transfer. Taking into account the dispersion, we come to
~2.17!, which is not a continuity equation, and thu
“f(x,y,t), with the account of dispersion, does not rep
sent the effective velocity that describes the horizontal m
transfer.

To define an effective horizontal velocity determining t
mass transfer, we introduce the renormalized poten
c(x,y,t) defined by

f5A3n k̂ coth~A3n k̂!c. ~2.35!

The expansion

A3n k̂ coth~A3n k̂!511n k̂22
n2

5
k̂41¯ ~2.36!

is again a power series of the Laplacian~2.15a!. Neglecting
the terms of orderln, we have instead of Eq.~2.17!

z t1l¹~z¹c!1Dc50. ~2.37!

Introducing the dimensionless renormalized velocity as

v5“c, ~2.38!

and using the full height~2.29!, we have from Eq.~2.37! the
continuity equation

h t1l“•~hv!50, ~2.39!

which shows thatv is the effective horizontal velocity deter
mining the mass transfer with the used accuracy~terms with
ln are neglected!. In a similar way Eq.~2.18!, with account
of Eq. ~2.38!, can be transformed to

A3n k̂ coth~A3n k̂!vt1l~v•“ !v1“z2nsD“z50.
~2.40!

Equations~2.39! and ~2.40! will be called the generalized
Boussinesq System~GBS!. Taking into account two first
terms in the expansion~2.36!, we come to the equation
equivalent to the classical Boussinesq equation@2,3#

~12nD!vt1l~v•“ !v1“z2nsD“z50. ~2.41!

For a more convenient comparison of Eq.~2.40! with Eq.
~2.41!, we define the operator

E~n k̂2!512nD2A3n k̂ coth~A3n k̂!, ~2.42!

which has the expansion

E~n k̂2!5~1/5!n2D21~2/35!n3D31¯ . ~2.43!

Then Eq.~2.40! can be written as
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@12nD2E~n k̂2!#vt1l~v•“ !v1“z2nsD“z1O~ln!

50. ~2.44!

We see that the classical Boussinesq equation follows f
Eq. ~2.44! when E(n k̂2) is neglected. As long as the term
with ln are neglected in Eq.~2.40! and, therefore, in Eqs
~2.41! and ~2.44!, we can substitute in the first term of E
~2.44!,

Dv52“z t1O~l!, ~2.45!

which follows from the continuity equation~2.37! in linear
approximation. Then Eq.~2.44! can be written, with the
same accuracy, in the form

@12E~n k̂2!#vt1l~v•“ !v1l21
“h1n“~z tt2sDz!

1O~ln!50. ~2.46!

Equation~2.46! can also be called a GB equation. In a sim
lar way one can obtain other GB-type equations, having
same accuracy as Eq.~2.44!.

It is easy to see that Eq.~2.22! and the exact linear dis
persion equation~2.24! follow also from the linearized GB
system.

III. KORTEWEG –dE VRIES–TYPE EQUATIONS

Further simplifications of GBS can be made for on
dimensional waves, whenv5v(x,t) andr5r(x,t). In this
case, following an approach of Ref.@3#, we shall derive the
Korteweg–de Vries–type equations that describe high
order dispersive effects.

First, neglecting the dispersive terms in Eq.~2.44! and
using the full dimensionless depth~2.29!, we come to the
equation

vt1l~v•“ !v1l21
“h1O~n!50. ~3.1!

The system of equations~2.39! and ~3.1! has a simple wave
solutionh5h(v) with

h~v !5~11 1
2 lv !2. ~3.2!

Thenv5v(x,t) satisfies the equation

v t1vx1 3
2 lvvx1O~n!50. ~3.3!

To find an extension of the simple waves for the GBS~qua-
sisimple waves!, we assume that@3#

h~x,t !5h~v !1nlw~x,t !, ~3.4!

whereh(v) is the same as in the simple wave atn50, i.e., it
is given by Eq.~3.2! and w(x,t) is an unknown function.
Substituting Eq.~3.4! in Eqs.~2.39! and ~2.44!, we come to
the following equations:

v t1vx1 3
2 lvvx1nw t5O~l2,ln!, ~3.5!

@12n]x
22E~n k̂2!#v t1vx1 3

2 lvvx2ns]x
3v

1n~12ns]x
2!wx5O~l2,ln!. ~3.6!
m

e

-

r-

From Eqs.~3.5! and ~3.6! it follows that

n~12ns]x
2!wx2nw t5@n]x

21E~n k̂2!#v t1ns]x
3v

1O~ln,l2!, ~3.7!

where nowk̂52 i ]x .
First, we take into account the dispersive terms of

lowest order, neglecting termsO(n2) and, respectively,
E(n k̂2). Then Eq.~3.7! is reduced to

n~wx2w t!5n~v tx1svxx!x1O~l2,ln!. ~3.8!

For the wave, propagating in positive direction, we can wr
in the same approximation

v t52vx1O~l,n!, ~3.9!

w t52wx1O~l,n!. ~3.10!

Combining Eq.~3.8! with Eqs.~3.9! and ~3.10!, we obtain

w5 1
2 ~vxt1svxx!1O~l,n!5 1

2 ~12s!vxt1O~l,n!

52 1
2 ~12s!vxx1O~l,n!. ~3.11!

Substituting this in Eq.~3.5!, we come to the following three
equations, having the same accuracy:

v t1vx1 3
2 lvvx2 1

2 n~v t1svx!xx50, ~3.12!

v t1vx1 3
2 lvvx2 1

2 n~12s!v txx50, ~3.13!

v t1vx1 3
2 lvvx1 1

2 n~12s!vxxx50 ~3.14!

@termsO(l2,ln) are neglected#. Each of them describes
nonlinear quasisimple dispersive wave, propagating in
positive direction, to the first order ofl and n. Equations
~3.12! and ~3.13! at s50 turn into one equation that ha
been considered by Peregrine and Benjamin, Bona, and
honey@22# while Eq.~3.14! is the well-known Korteweg–de
Vries equation.

To find the dispersive corrections to Eqs.~3.12!–~3.14! of
arbitrary order, one must add higher-order terms to~3.8!–
~3.10!. To do this, we first write Eq.~3.7! in the form

n~11ns k̂2!wx2nw t5@A3n coth~A3n k̂!21#v t2 ins k̂3v

1O~ln,l2!. ~3.15!

For the wave propagating to the right, we now have

v t52 iv~ k̂!v1O~l!, w t52 iv~ k̂!w1O~l!,
~3.16!

where, according to Eq.~2.24!,

v~ k̂!5~3n!21/4~11ns k̂2!1/2@ k̂ tanh~A3n k̂!#1/2.
~3.17!

From Eq.~3.15!–~3.17! it follows that

nv~ k̂!w52L~ k̂!v1O~ln,l2!, ~3.18!

where
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L~ k̂!5v~ k̂!2 k̂. ~3.19!

Differentiating Eq.~3.18! with respect tot and then substi-
tuting v t from Eq. ~3.16!, we have

nw t5 iL ~ k̂!v1O~ln,l2!. ~3.20!

From Eqs.~3.5! and ~3.20! we easily derive the equation

v t1vx1 3
2 lvvx1 iL ~ k̂!v1O~ln,l2!50, ~3.21!

which will be called the generalized KdV equation. In line
approximation it coincides with the first of Eqs.~3.16!.
Equation~3.21! was proposed earlier@23# as amodelequa-
tion for weakly nonlinear long internal waves in stratifie
fluids of finite depth. In fact, as is seen from the above d
vation, it is a rigorous approximate equation, that can
obtained in a regular way by the multiscale method with
accuracy indicated in Eq.~3.21!. In the next section it will be
demonstrated that it leads to a consistent theory of the r
nant soliton radiation.

ExpandingL( k̂) in powers ofn we can obtain the disper
sion corrections of any order to the KdV equation. In p
ticular, from the expansion

iL ~ k̂!5b]x
31g]x

51¯ , ~3.22!

where

b5
1

2
n~12s!, g5

n2

40
@2425~11s!2#, ~3.23!

we come to the fifth-order KdV equation:

] tv1~11 3
2 lv !]xv1b]x

3v1g]x
5v1O~ln,l2,n3!50.

~3.24!

In fact the effect of the resonant soliton radiation, quali
tively, also follows from Eq.~3.24! @8–11#. However, only
the full Eq. ~3.21! gives a consistent and a complete theo
of this effect in shallow fluids. This is because expans
~3.22! is justified if

nD22!1, ~3.25!

whereD is the wave characteristic length. In the problem
soliton radiation with wave numberk, D5k21 and, as will
be shown in the next section,nk2;1, which means that con
dition ~3.25! is not satisfied for the soliton radiation.

On the other hand, Eq.~3.24! can be used for the estima
tion of influence of higher-order dispersion on the solit
width. Indeed, using only the first term on the right-hand s
of Eq. ~3.22!, we come to the KdV equation~3.14!, which
has a soliton solution of the form

vs5
2~M21!

l
sech2Fk0

2
~x2Mt !G , ~3.26!

wherek0 is the inverse width of unperturbed soliton,

k0
25

2~M21!

n~12s!
. ~3.27!
i-
e
e

o-

-

-

n

f

e

Now D5k0
21 and if M21 is sufficiently small, namely,

uM21u!~1/6!u12su, ~3.28!

we have

3nk0
2!1. ~3.29!

Thus condition~3.25! is satisfied and the fifth-derivative
term in Eq. ~3.24! can be considered as smallinside the
soliton core. In fact, Eq.~3.24! cannot be used for the calcu
lation of the full soliton deformation of the next order to E
~3.26!, because deriving Eq.~3.24! we have neglected non
linear terms of orderln andl2 that may be comparable with
the fifth-derivative term in the soliton domain. However, t
latter term is greater than other corrections at large distan
from the soliton center. Therefore, investigating the solit
asymptotics, we can use the linearized Eq.~3.24!

] tv1]xv1b]x
3v1g]x

5v50 ~3.30!

with the solution

v}exp~2kux2Mtu!, ~3.31!

wherek.0 and

k25
2b6Ab214~M21!g

2g
~3.32!

~the choice of sign depends on sgnb!. At condition ~3.28!,
leading to Eq.~3.29!, Eq. ~3.32! can be reduced to

k'k0H 12
~M21!

20~12s!2 @2425~11s!2#J
'k0H 12

nk0
2

40~12s!
@2425~11s!2#J , ~3.33!

wherek0
2 is given by Eq.~3.27!. Evidently,k0

2.0 if

sgn~M21!5sgn~12s!. ~3.34!

The second term in Eq.~3.33! represents a correction to th
soliton width caused by higher-order dispersion.

IV. THE RESONANT RADIATION OF WEAKLY
NONLINEAR SHALLOW-WATER SOLITONS

Now we return to the full GKdV equation~3.21!. Due to
Eq. ~3.26!, it is convenient to write it in the new variables

u5
3l

2~M21!
v, ~4.1!

j5k~x2Mt !, t5~M21!kt. ~4.2!

This gives

]tu2]ju1u]ju1 i ~M21!21k21L~ k̂!u50, ~4.3!

where, now,

k̂52 ik]j . ~4.4!
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Then we put

u~t,j!5u0~j!1 f ~t,j!, ~4.5!

where

u053 sech2~j/2! ~4.6!

describes the soliton~3.26! with the renormalized width
~3.33! and f (t,j) is a small addition. The soliton radiation,
it exists, is described by the asymptotics off (t,j) at uju
@1. Substituting Eq.~4.5! in Eq. ~4.3!, and taking into ac-
count the KdV equation foru0(j), we have the following
asymptotic equation forf (t,j) in the domain beyond the
soliton

]t f 2]j f 1]j~u0f !1 i ~M21!21k21L~ k̂! f 52 iL 1~ k̂!u0 ,
~4.7!

where

L1~ k̂!'~M21!21k21L~ k̂!1k23k̂3. ~4.8!

Beyond the soliton, Eq.~4.7! becomes

]t f 2]j f 1 i ~M21!21k21L~ k̂! f 50. ~4.9a!

This equation describes the free radiation that is a supe
sition of plane waves

f q}exp@ i ~qj2Vt!#, ~4.9b!

where, with account of Eq.~4.4!,

V~q!5~M21!21k21L~kq!2q. ~4.10!

It is easy to check that atV50, the corresponding wav
number isq(0)5k/k, wherek satisfies the equation

v~k!/k5M . ~4.11!

Here

v~k!5~3n!21/4~11nsk2!1/2@k tanh~A3nk!#1/2 sgnk
~4.12!

is the frequency of the linear wave with the wave numbek
@cf. ~2.24!#. Therefore, Eq.~4.9! at V50 and q5k/k de-
scribes a wave that has phase velocity equal to the so
velocity M. Such a wave must resonantly interact with t
soliton and will be called the resonant wave. Respectivelk,
satisfying Eq.~4.11! at givenM, will be called the resonan
wave number. The purpose of this section is the study of
resonance effect without expansion of dispersion equa
~4.12! in powers ofk.

First, we find resonant wave numbers from Eq.~4.11!.
Using Eq.~4.12!, we reduce Eq.~4.11! to the equation

sr 253~M2r coth r 21!, r 5A3nk. ~4.13!

The real positive rootsr of this equation determine the res
nant wave numbers for differents at fixedM, i.e., the func-
tion r (s). The inverse function,s(r ), immediately follows
from Eq. ~4.13!:

s~r !53r 22~M2r coth r 21!. ~4.14!
o-

n

is
n

Further investigation ofs(r ) becomes simpler if one write
it in the form

s~r !5
3~M221!

r tanh r
13S coth r

r
2

1

r 2D . ~4.15!

The second term in Eq.~4.15! is a decreasing positive func
tion of r at all 2`,r ,` and

3S coth r

r
2

1

r 2D'12
r 2

15
~r !1!, ~4.16a!

3S coth r

r
2

1

r 2D'
3

r
~r @1!. ~4.16b!

The maximum of this term is equal to one. The behavior
the full function ~4.15! substantially depends on the sign
M21.

At M.1, the function s(r ) monotonously decrease
from s(0)5` to s(`)50. Therefore, Eq.~4.39! has two
real roots,6r (s), at

M.1, s,1 ~4.17!

@s must satisfy condition~3.34!#. The functions(r ) is easily
tabulated at a givenM by means of Eq.~4.14!. Thenr (s;M )
can be found graphically. AtM251.1, the functionr (s) is
shown in Fig. 1. At sufficiently smalls, it can be written as

r ~s!'3M2/s ~s!M2;1!. ~4.18!

Equation ~4.18! can be used for estimations with a goo
accuracy ats,0.5. Then from Eq.~3.28! it follows that

M21!0.08. ~4.19!

At s.0.5, the restriction onM21 is even harder. AtM
21.0 and 0.5,s,1, the intervals forr (s;M ) are rather
narrow. Writing Eq. ~3.28! in the form M21,(C/6)(1
2s), whereC!1, and taking as an exampleC51/5, we
have

0,M21,~1/30!~12s!. ~4.20!

FIG. 1. r vs s at M251.1.
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On the other hand, from Eq.~4.15! at M21!1 it follows
that

m'
1

2 S tanh r

r
21D1

sr tanh r

6
, m5M21.

~4.21!

This determines the functionr (s;m), where one must take
into account thatm is restricted by Eq.~3.28!. Replacing it,
for instance, by Eq.~4.20! and taking s50.5, we have
mmax50.017. The functionr (s;m), at somes>0.5 andm
inside of the interval~4.20!, are shown in Fig. 2.

In the other case when solitons exist,

M,1, s.1 ~4.22!

@see Eq.~3.34!#, the first term in Eq.~4.15! is negative and

s~r !'2~12M2!r 22 ~r !1!,

s~r !'3M2r 21 ~r @1!.

In this case,s(r ) has a positive maximum. From Eqs.~4.15!
and ~4.16a! one concludes that@s(r )#max,1. Therefore in
the case~4.22!, Eq. ~4.14! has no real rootsr (s). From the
above analysis it follows that the resonance is possible
case~4.17! and impossible in case~4.22!.

It is easy to check that Eq.~4.13! also has two smal
imaginary rootsk'6 ik, i.e., q'6 i . Substituting this in
Eq. ~4.9b! at V50, we see that in this case~4.9b! represents,
with the assumed accuracy, the soliton asymptotic beha
at uju→` @cf. Eq. ~3.31!#.

Now consider the group velocityVg of the resonant wave
Writing

FIG. 2. r vs m5M21.0 at different 1.s>0.5. ~a! s50.5;
~b! s50.6; ~c! s50.7; ~d! s50.8; ~e! s50.9.
in

or

Vg5
dv~k!

dk
[

v~k!

k
k

d ln v~k!

dk
5Mr

d ln v~r !

dr
,

~4.23!

and using Eq.~4.12!, we have

Vg5M F3~sr 211!

2~sr 213!
1

r

sinh 2r G .
Substituting heres from Eq. ~4.14!, we come to the follow-
ing expression for the group velocity:

Vg5M F11
M221

M2

tanh r

r
1x~r !G , ~4.24!

where

x~r !5
1

2
2

tanh r

r
1

r

sinh 2r
.

One can easily check thatx(r ) is a positive and increasing
function with

x~0!50,x~1!50.014, x~2!50.091,

x~3!50.183, x~`!50.500.

We see that

Vg.M ~4.25a!

at all r, and

Vg2M'M /2 ~r @1!. ~4.25b!

The obtained wave numbers and group velocities of
resonant soliton radiation essentially differ from those f
lowing from the fifth-order KdV equation@8,10,11#. More-
over, the criteria of the soliton radiation are different. As w
have seen, from the GKdV equation it follows that solito
can radiate only at condition~4.17!. On the other hand, from
the fifth-order KdV equation~3.24! it follows that the radia-
tion condition isbg.0; using Eq.~3.23!, we write this as

~12s!@2425~11s!2#.0,

which gives, in addition to Eq.~4.17!, s.A24/521'1.19.
Now we shall show that the soliton indeed radiates

resonant wave with the phase velocity equal toM and the
group velocity that is larger thanM, according to Eq.~4.25!.
For that, we solve Eq.~4.7! with the initial condition

f ~0,j!50. ~4.26!

Thus, we assume that the soliton starts to radiate att50.
Performing the Fourier transform off (t,j),

w~t,q!5E
2`

`

dj e2 iqj f ~t,j! ~4.27!

and transforming Eq.~4.7!, we have the following equation
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i ]tw~t,q!2V~q!w~t,q!2
q

2p E
2`

`

w0~q2q8!w~t,q8!dq8

5L1~kq!w0~q!, ~4.28!

where

w0~q![E
2`

`

dj e2 iqju0~j!512pq csch~pq! ~4.29!

and we took into account Eqs.~4.4! and ~4.10!. From Eq.
~4.26! it follows that

w~0,q!50. ~4.30!

The main contribution to the radiation fieldf (t,j) at
large t and j comes fromw(t,q) in the resonant region
whereq is sufficiently close toqr56k/k; here,k satisfies
the resonant equation~4.11!. As far asV(qr)50, we can
replaceV(q) in the resonant region by

V~q!'~q2qr !V r8 , qr56k/k, ~4.31!

where, according to Eqs.~4.10!, ~4.8!, and~3.19!,

V r85FdV~q!

dq G
q5qr

5~M21!21~Vg2M !, V r8.0.

~4.32!

Equation~4.28! in the resonant region can be replaced by

i ]tw r~t,q!2V~q!w r~t,q!

2
qr

2pE2`

`

w0~qr2q8!w r~t,q8!dq8

5L1~kqr !w0~qr ! ~4.33!

with V(q) from Eq. ~4.31!. Based on the results, obtaine
for high-dispersive systems in Refs.@10, 24#, we look for the
solution to Eq.~4.33! in the form

w r~t,q!5r
exp@2 i ~q2qr !V r8t#21

~q2qr !V r8
, ~4.34!

wherer can be assumed as a constant coefficient~indepen-
dent of q!. This expression is not singular atq5qr , but
w r(t,qr)}t, i.e., w r(t,qr)→` at t→`. The width of the
resonant region is

Dq52p/Qr8t; ~4.35!

thus,Dq→0 at t→`. Due to that, at larget,

E
2`

`

w0~qr2q8!w r~t,q8!dq8'w0~0!E
2`

`

w r~t,q8!dq8

52 iprw0~0!/V r8 . ~4.36!

Substituting Eq.~4.34! into Eq. ~4.33! and taking into ac-
count Eqs.~4.31! and ~4.36!, we obtain
r5F11 i
qrw0~0!

2V r8
G21

L1~kqr !w0~qr !. ~4.37!

Using Eqs.~4.32! and ~4.29!, we have

qrw0~0!

2V r8
566

M21

Vg2M

k

k
. ~4.38!

From Eqs.~4.13!, ~3.33!, and~3.27! it follows that

k

k
'r ~s!S 12s

6~M21! D
1/2

@1. ~4.39!

Then from Eqs.~4.8! and ~4.29! we obtain

L1~kqr !'6~k/k!3, ~4.40a!

w0~qr !'24p
k

k
expS 2p

k

k D . ~4.40b!

Now we restoref r(t,j) by means of

f r~t,j!5
1

2p E
2`

`

w r~t,q!eiqjdq5
r exp~ iqrj!

V r8
I ~t,j!

1c.c., ~4.41!

where

I ~t,j!5
1

2p E
2`

` exp@ ix~j2V r8t!2exp~ ixj!#

x
dx.

~4.42!

As long as the integrand in Eq.~4.42! has no singularity, we
can replace its denominator byx2 id, whered→10. Then,
straightforward calculations give

I ~t,j!5 i @Q~j2V r8t!2Q~j!#, ~4.43!

whereQ(Z) is the step function:

Q~Z!5 H1
0

~Z.0!

~Z,0!. ~4.44!

Evidently, Eq.~4.43! can be written as

I ~t,j!52 iQ~j!Q~V r8t2j!. ~4.45!

From Eq.~4.45! it follows that, atjÞ0, the functionf r(t,j)
satisfies initial condition~4.26!.

Collecting all factors determining Eq.~4.41! and using
Eqs.~4.1!, ~4.2!, and~4.5! we finally come to the following
asymptotic expression for the soliton radiation:

v r~ t,x!'32p
~M21!2

l~Vg2M ! S k

k D 4

3expS 2
pk

k D ImH S 11 i
6~M21!

Vg2M

k

k D 21

3exp@ ik~x2Mt !#J Q~x2Mt !Q~Vgt2x!.

~4.46!



t

es
te

e
se

n
e
ns

t
b

,

n

u
n

o

in

n

e

e

e

of
e

on
ate

Eq.

-
in
l.
-

t os-

5078 PRE 58V. I. KARPMAN
It is valid at

ux2Mtu@k21, uVgt2xu@k21. ~4.47!

In accordance with Eq.~4.25!, the soliton radiates forward
and from Eq.~4.46! it follows that the radiation is located a

Mt,x,Vgt, ~4.48!

in agreement with our initial conditions. The discontinuiti
in Eq. ~4.46! evidently appear due to its asymptotic charac
at conditions~4.47!.

From Eqs.~4.46! and ~4.39! and Fig. 1 we see that th
amplitude of radiation is exponentially small and it decrea
with s. In particular, as it follows from Eq.~4.18!, the radia-
tion vanishes ats→0. This again disagrees with a predictio
following from the fifth-order KdV equation. We also not
that the full perturbation theory for shallow water solito
with the assumptionn5l @4# was developed only fors
50. One should expect that at 0,s,1, when the resonan
radiation takes place, this perturbation theory should
somehow modified. This is, however, beyond the scope
the present paper.

The factor in the curly brackets of Eq.~4.46! has, accord-
ing to Eq.~4.24!, different behavior in two cases. Namely

Vg2M'2~M21!
tanh r

r
!1 @r ~s!;1# ~4.49!

andVg2M;1 at r (s)@1 @see Eq.~4.25b!#. Of course, the
most important case is Eq.~4.49!, because then the radiatio
is larger. Due to Eqs.~4.49! and ~4.39!,

11 i
6~M21!

Vg2M

k

k
' i

3k

k

r

tanh r
, ~4.50!

and Eq.~4.46! is reduced to

v r~ t,x!'2
16p

3l
~M21!S k

k D 3

expS 2
pk

k D
3cos@k~x2Mt !#Q~x2Mt !Q~Vgt2x!

@r ~s!;1#. ~4.51!

It should also be mentioned that the straightforward acco
of higher-order terms describing small soliton deformatio
leads to small renormalizations ofu0 in Eq. ~4.7!. As a re-
sult, we would have corresponding small renormalizations
the second term in the brackets in Eq.~4.37! as well as small
corrections to the factor beyond them. This would give
significant corrections to Eq.~4.46!. From this it follows, in
particular, that higher-order nonlinear corrections can be
glected as far as the soliton radiation is is considered.

Similar results can be obtained~after a more cumbersom
algebra! directly from the GB system, derived in Sec. II.

Equation~3.21! was earlier applied to the problem of th
soliton radiation in a two-layer model of stratified fluids@25#.
Here, we shall not discuss this model, noting only that n
ther the approach nor the results of Ref.@25# are similar to
ours.
r
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An extension of the above approach to the radiation
nonlinear Schro¨dinger solitons and a comparison with th
perturbation theory developed in Ref.@5# will be considered
elsewhere.

V. SOLITON DAMPING CAUSED BY THE RADIATION

The radiation must lead to the slowing down of the solit
and, respectively, to a decrease of its amplitude. To estim
this, we start from the GKdV equation~3.21!, writing it in
the form

v t1
3

2
lvvx1 iv~ k̂!v50. ~5.1!

The last term contains an integral operator, defined by
~2.15b!. Multiplying Eq. ~5.1! by v(t,x) and integrating, we
have

] tE
2`

`

v2~ t,x!dx1 i E
2`

`

v~ t,x!v~ k̂!v~ t,x!dx50.

~5.2!

@From Eqs.~4.5!, ~4.6!, and ~4.26! it follows that v(t,x)
vanishes atx→6`.# From Eqs.~2.15b! and~4.12!, one can
see thativ( k̂) is an anti-Hermitian operator.@Due to that
expansion~3.22! contains only odd derivatives with real co
efficients.# From this we conclude that the second term
Eq. ~5.2! is pure imaginary. The first term is, evidently, rea
Then each term in Eq.~5.2! must be equal to zero. In par
ticular,

] tE
2`

`

v2~ t,x!dx50. ~5.3!

Substituting herev'vs1v r , wherevs andv r are the soliton
and its radiation~in the following, the soliton deformation is
neglected!, we have

] tE
2`

`

vs
2~ t,x!dx'2] tE

2`

`

^v r
2~ t,x!&, ~5.4!

where the angular brackets mean the averaging over fas
cillations in Eq.~4.46!. Using Eqs.~4.1!, ~4.2!, and~4.6!, we
obtain

E
2`

`

vs
2~ t,x!dx5

32~M21!2

3kl2 . ~5.5!

From Eqs.~4.46! and ~4.39! we have

E
2`

`

^v r
2~ t,x!&dx5

64p2~12s!4

81l2~Vg2M !

3r 8F11
6~M21!~12s!r 2

~Vg2M !2 G21

3expF2pS 2~12s!

3~M21! D
1/2

r G t. ~5.6!

Here,r 5r (s,M ) is the root of Eq.~4.13! andM is a ~slow!
function of t. Substituting Eqs.~5.5! and~5.6! into Eq. ~5.4!,
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we obtain an equation describing the slowing down and
decrease of the soliton amplitude

d~M21!

dt
'2

4p2

81 S 3

n D 1/2 ~12s!3r 8

~Vg2M ! S 2~12s!

3~12M ! D
1/2

3F11
6~M21!~12s!r 2

~Vg2M !2 G21

3expF2pS 2~12s!

3~M21! D
1/2

r G . ~5.7!

Taking into account Eq.~3.28!, we see that Eq.~5.7! is ex-
ponentially small, which justifies the adiabatic approach u
in this paper~see also below!.

Equation~5.7! can be approximately integrated by the a
proach developed in Ref.@26#. Introducing a new dependen
variable

y~ t !5pr S 2~12s!

3„M ~ t !21…D
1/2

, ~5.8!

and denotingy05y(0), we seethat

y~ t !.y0@1. ~5.9!

Now, for simplicity, consider the most important case~4.49!.
Then from Eqs.~5.7! and ~5.8! it follows that

y24ey
dy

dt
'

~12s!r 2 tanh r

27pA3n
. ~5.10!

Integrating this equation with an account of Eq.~5.9!, we
approximately have~cf. Ref. @26#!

y~ t !'y0@11y0
21 ln~11t/tch!#. ~5.11!

Here,tch is a characteristic time, defined by

tch'
27pA3n

~12s!r 2 tanh r
y0

24ey0

5
9p4r

tanh r
y0

27e2y0ts , ~5.12!

wherets is the ‘‘soliton time’’

ts5@k~M21!# t50
21 . ~5.13!

It is the time during which the soliton passes a distance eq
to its width. At the above made assumptions,tch/ts@1.

From Eqs.~5.8! and ~5.11! we have
e

d

-

al

M ~ t !21'
M021

@11y0
21 ln~11t/tch!#

2 , ~5.14!

wherey0 is given by Eq.~5.8! at t50.
At t;tch ~or larger! the wave train becomes inhomog

neous, because its local amplitude depends on the so
amplitudea}M21 at the moment of radiation. Therefor
the characteristic length of the radiated wave train isLch
;(Vg2M )tch.

VI. CONCLUSION

Starting from the basic equations of gravity-capilla
waves in ideal incompressible fluids, we derived by a mu
scale method the generalized Boussinesq system and
generalized KdV equation for shallow-water waves in whi
high-order dispersive effects of any order ofn @from Eq.
~2.6!# are taken into account, but the considered nonlin
terms are of orderl, as in the classical Boussinesq and Kd
equations. In linear approximation, from the GB and GKd
equations, the exact dispersive law for the gravity-capilla
waves follows. Expanding a dispersive term~which contains
an integral operator! in powers of dispersive parametern,
one comes to the fifth- and higher-order KdV-type equatio
The solitons, described by the GKdV~and GB! equation,
radiate ifM.1 and 0,s,1. Otherwise, they are steady.

In fact, the effect of soliton radiation follows also from
the fifth-order KdV equation. However, the radiation wa
numbers, phase and group velocities as well as amplitu
following from the GKdV equation, essentially differ from
those predicted by the fifth-order KdV equation. Therefo
the correct description of the radiation can be achieved o
by an account of the dispersion to all orders ofn, i.e., on the
basis of GKdV or GB equations. On the other hand,
soliton profile, following from GKdV and GB equations co
incides, with a sufficient accuracy, with the classic
shallow-water soliton described by the regular KdV equ
tion. All higher-order nonlinear corrections to shallow-wat
solitons and their radiation can be neglected.

Finally we note that the present approach can be use
derive generalized Kadomtzev-Petviashvili and nonlin
Schrödinger equations, taking into account higher-order d
persive effects and permitting one to develop a consis
theory of the resonant soliton radiation in corresponding s
tems. These problems are under investigation.
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